Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Due to the high-precision angle measurement performance, the monopulse technique plays a key role in fields such as remote sensing and space surveillance. The accuracy of monopulse angle measurement depends on the received amplitude and phase information, which is sensitive to the polarization component. Previous research has demonstrated that the performance of monopulse radar equipped with a parabolic antenna suffers from the cross-polarization component. However, it is not clear whether phased arrays (PAs) with higher degrees of freedom will also be affected by the cross-polarization component, and the parameter tolerance for performance degradation remains uncertain. In this paper, we establish a mathematical model of monopulse angle measurement in PA radar, which provides a comprehensive consideration of the cross-polarization component. Then, the received amplitude and phase patterns of PA radar are analyzed, and the theoretical angle errors caused by the cross-polarization jamming are derived. The experiments are conducted based on the measured amplitude-phase patterns of both co-polarization and cross-polarization. Experimental results are consistent with the theoretical analysis: the angle errors caused by cross-polarization jamming can reach half of the beamwidth in both azimuth and elevation dimensions, provided that the power of the cross-polarization and co-polarization components at the receiver is equal.

Details

Title
Performance Degradation in Monopulse Angle Measurement of Planar Phased-Array Due to Cross-Polarization Component
Author
Zhang, Yunhui 1   VIAFID ORCID Logo  ; Pang, Bo 1 ; Dai Dahai 1 ; Chen, Bo 2 ; Tan Zhengkuan 1   VIAFID ORCID Logo 

 College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, [email protected] (Z.T.) 
 National Key Laboratory of Science and Technology on Blind Signal Processing, Chengdu 611731, China 
First page
2454
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3233250132
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.