Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents a numerical investigation into the generation of 2D ordered pillar array columns for liquid chromatography columns, focusing on the development of an algorithm for the automatic creation of unit-cell morphologies and their subsequent computational fluid dynamics (CFD) simulation. The algorithm is developed to incorporate functional and operational constraints, which ensure that the generated structures are permeable and suitable for chromatographic separations. The functional constraints include the principal pathway and no dry void constraints, while the operational constraints involve symmetry and porosity thresholds. The algorithm’s efficacy is demonstrated with a reduction rate of 97.8% for order 5 matrices. CFD simulations of the generated morphologies reveal that the homogeneity of the fluid velocity profile within the unit cell is a key determinant of separation performance, suggesting that refining the resolution of discrete unit cells could enhance separation efficiency. Future work will explore the inclusion of more complex morphologies and the impact of particle shape and size on separation efficiency.

Details

Title
Numerical Investigation of 2D Ordered Pillar Array Columns: An Algorithm of Unit-Cell Automatic Generation and the Corresponding CFD Simulation
Author
Jiang Qihao 1 ; Rocca, Stefano 2 ; Shaikhuzzaman Kareem 1   VIAFID ORCID Logo  ; Dimartino, Simone 1   VIAFID ORCID Logo 

 Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, UK 
 School of Engineering and Architecture, University of Bologna, Via Zamboni, 33, 40126 Bologna, BO, Italy 
First page
184
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
22978739
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3233253913
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.