Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Advanced persistent threat (APT) attacks present significant challenges to cybersecurity due to their covert nature, high complexity, and ability to operate across multiple temporal and spatial scales. Existing detection techniques often struggle with issues like class imbalance, insufficient feature extraction, and the inability to capture complex attack dependencies. To address these limitations, we propose a dual-phase framework for APT detection, combining multi-feature-conditioned generative adversarial networks (MF-CGANs) for data reconstruction and a multi-scale convolution and channel attention-enhanced graph convolutional network (MC-GCN) for improved attack detection. The MF-CGAN model generates minority-class samples to resolve the class imbalance problem, while MC-GCN leverages advanced feature extraction and graph convolution to better model the intricate relationships within network traffic data. Experimental results show that the proposed framework achieves significant improvements over baseline models. Specifically, MC-GCN outperforms traditional CNN-based IDS models, with accuracy, precision, recall, and F1-score improvements ranging from 0.47% to 13.41%. The MC-GCN model achieves an accuracy of 99.87%, surpassing CNN (86.46%) and GCN (99.24%), while also exhibiting high precision (99.87%) and recall (99.88%). These results highlight the proposed model’s superior ability to handle class imbalance and capture complex attack behaviors, establishing it as a leading approach for APT detection.

Details

Title
Symmetric Dual-Phase Framework for APT Attack Detection Based on Multi-Feature-Conditioned GAN and Graph Convolutional Network
Author
Liu, Qi 1 ; Yao, Dong 1 ; Zheng, Chao 2 ; Dai Hualin 1   VIAFID ORCID Logo  ; Wang, Jiaxing 1 ; Ning Liyuan 1 ; Liang Qiqi 1 

 School of Computer and Information Engineering, Tianjin Chengjian University, Tianjin 300384, China; [email protected] (Q.L.); [email protected] (Y.D.); [email protected] (J.W.); [email protected] (L.N.); [email protected] (Q.L.) 
 Smart Education Research and Development Center, Open University, Tianjin 300191, China; [email protected] 
First page
1026
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3233254049
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.