Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Radio frequency fingerprint identification (RFFI) leverages the unique characteristics of radio signals resulting from inherent hardware imperfections for identification, making it essential for applications in telecommunications, cybersecurity, and surveillance. Despite the advancements brought by deep learning in enhancing RFFI accuracy, challenges persist in model deployment, particularly when transferring RFFI models across different receivers. Variations in receiver hardware can lead to significant performance declines due to shifts in data distribution. This paper introduces the source-free cross-receiver RFFI (SCRFFI) problem, which centers on adapting pre-trained RF fingerprinting models to new receivers without needing access to original training data from other devices, addressing concerns of data privacy and transmission limitations. We propose a novel approach called contrastive source-free cross-receiver network (CSCNet), which employs contrastive learning to facilitate model adaptation using only unlabeled data from the deployed receiver. By incorporating a three-pronged loss function strategy—minimizing information entropy loss, implementing pseudo-label self-supervised loss, and leveraging contrastive learning loss—CSCNet effectively captures the relationships between signal samples, enhancing recognition accuracy and robustness, thereby directly mitigating the impact of receiver variations and the absence of source data. Our theoretical analysis provides a solid foundation for the generalization performance of SCRFFI, which is corroborated by extensive experiments on real-world datasets, where under realistic noise and channel conditions, that CSCNet significantly improves recognition accuracy and robustness, achieving an average improvement of at least 13% over existing methods and, notably, a 47% increase in specific challenging cross-receiver adaptation tasks.

Details

Title
Cross-Receiver Radio Frequency Fingerprint Identification: A Source-Free Adaptation Approach
Author
Yang, Jian 1 ; Zhu Shaoxian 2 ; Wen Zhongyi 2 ; Li, Qiang 2 

 School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing 100080, China 
 School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China 
First page
4451
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3233261483
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.