Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Real-time, high-resolution monitoring of chemically diverse water pollutants remains a critical challenge for smart water management. Here, we report a fully integrated, multi-modal nano-sensor array, combining graphene field-effect transistors, Ag/Au-nanostar surface-enhanced Raman spectroscopy substrates, and CdSe/ZnS quantum dot fluorescence, coupled to an edge-deployable CNN-LSTM architecture that fuses raw electrochemical, vibrational, and photoluminescent signals without manual feature engineering. The 45 mm × 20 mm microfluidic manifold enables continuous flow-through sampling, while 8-bit-quantised inference executes in 31 ms at <12 W. Laboratory calibration over 28,000 samples achieved limits of detection of 12 ppt (Pb2+), 17 pM (atrazine) and 87 ng L−1 (nanoplastics), with R2 ≥ 0.93 and a mean absolute percentage error <6%. A 24 h deployment in the Cherwell River reproduced natural concentration fluctuations with field R2 ≥ 0.92. SHAP and Grad-CAM analyses reveal that the network bases its predictions on Dirac-point shifts, characteristic Raman bands, and early-time fluorescence-quenching kinetics, providing mechanistic interpretability. The platform therefore offers a scalable route to smart water grids, point-of-use drinking water sentinels, and rapid environmental incident response. Future work will address sensor drift through antifouling coatings, enhance cross-site generalisation via federated learning, and create physics-informed digital twins for self-calibrating global monitoring networks.

Details

Title
An Edge-Deployable Multi-Modal Nano-Sensor Array Coupled with Deep Learning for Real-Time, Multi-Pollutant Water Quality Monitoring
Author
Zhexu, Xi 1   VIAFID ORCID Logo  ; Nicolas, Robert 2 ; Wei Jiayi 3 

 Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK, Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK 
 Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK 
 Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK 
First page
2065
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3233263430
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.