Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Outer-membrane vesicles (OMVs), naturally secreted by Gram-negative bacteria, have gained recognition as a versatile platform for the development of next-generation vaccines. OMVs are essential contributors to bacterial pathogenesis, horizontal gene transfer, cellular communication, the maintenance of bacterial fitness, and quorum sensing. Their intrinsic immunogenicity, adjuvant properties, and scalability establish OMVs as potent tools for combating infectious diseases and cancer. Recent advancements in genetic engineering and biotechnology have further expanded the utility of OMVs, enabling the incorporation of multiple epitopes and antigens from diverse pathogens. These developments address critical challenges such as antigenic variability and co-infections, offering broader immune coverage and cost-effective solutions. This review explores the unique structural and immunological properties of OMVs, emphasizing their capacity to elicit robust immune responses. It critically examines established and emerging engineering strategies, including the genetic engineering of surface-displayed antigens, surface conjugation, glycoengineering, nanoparticle-based OMV engineering, hybrid OMVs, and in situ OMV production, among others. Furthermore, recent advancements in preclinical research on OMV-based vaccines, including synthetic OMVs, OMV-based nanorobots, and nanodiscs, as well as emerging isolation and purification methods, are discussed. Lastly, future directions are proposed, highlighting the potential integration of synthetic biology techniques to accelerate research on OMV engineering.

Details

Title
Bioengineering Outer-Membrane Vesicles for Vaccine Development: Strategies, Advances, and Perspectives
Author
Zahid Ayesha 1   VIAFID ORCID Logo  ; Hazrat, Ismail 2 ; Wilson, Jennifer C 3   VIAFID ORCID Logo  ; Darren, Grice I 1   VIAFID ORCID Logo 

 Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, QLD 4222, Australia, School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia; [email protected] 
 MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; [email protected] 
 School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia; [email protected] 
First page
767
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
2076393X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3233322722
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.