Full text

Turn on search term navigation

© 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Ambient temperature affects the occurrence and prevalence of plant disease. Most bacterial diseases are damaging at high temperatures. However, kiwifruit bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) has been found to be prevalent at relatively cool temperatures, and it is unclear how ambient temperature affects the development of kiwifruit bacterial canker. In this study, basal resistance to Psa was suppressed in kiwifruit at cool growth temperature (16 °C) compared with at normal temperature (24 °C). In addition, RNA sequence analysis and ethylene content assessment indicated that ethylene modulated kiwifruit resistance to Psa at normal growth temperature and that cool temperature inhibited ethylene accumulation and Psa-induced activation of the ethylene signaling pathway in kiwifruit. Virusmediated silencing of the kiwifruit ethylene signaling gene AcEIN2 suppressed kiwifruit resistance to Psa at normal growth temperature. Exogenous application of ethylene inhibitor 1-methylcyclopropene eliminated the difference in kiwifruit resistance to Psa at 16 and 24 °C. Exogenous application of ethylene analogues ethephon induced resistance to Psa in kiwifruit. In conclusion, cool temperatures impair basal resistance to Psa by reducing the activation of ethylene biosynthesis and signaling in kiwifruit. The results provide clues for new strategies to control plant diseases in a context of global environmental change.

Details

Title
Ethylene-mediated resistance to bacterial canker in kiwifruit is suppressed by cool temperature
Author
Wu, Zhiran; Dang, Qiangian; Ouyang, Shuni; Liu, Wei; Huang, Lili
Pages
1517-1528
Section
Research Paper
Publication year
2025
Publication date
Jul 2025
Publisher
KeAi Publishing Communications Ltd
ISSN
20959885
e-ISSN
24680141
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3233489856
Copyright
© 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.