Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The traditional manufacturing industry is facing the challenge of digital transformation, which involves the enhancement of intelligence and production efficiency. Many robotic applications have been discussed to enable collaborative robots to perform operations smartly rather than just automatically. This article tackles the issues of intelligent robots with cognitive and coordination capability by introducing cyber-physical integration technology. The authors propose a system architecture with open-source software and low-cost hardware based on the 5C hierarchy and then conduct experiments to verify the proposed framework. These experiments involve the collection of real-time data using a depth camera, object detection to recognize obstacles, simulation of collision avoidance for a robotic arm, and cyber-physical integration to perform a robotic task. The proposed framework realizes the scheme of the 5C architecture of Industry 4.0 and establishes a digital twin in cyberspace. By utilizing connection, conversion, calculation, simulation, verification, and operation, the robotic arm is capable of making independent judgments and appropriate decisions to successfully complete the assigned task, thereby verifying the proposed framework. Such a cyber-physical integration system is characterized by low cost but good effectiveness.

Details

Title
A Cyber-Physical Integrated Framework for Developing Smart Operations in Robotic Applications
Author
Tien-Lun, Liu; Po-Chun, Chen; Yi-Hsiang, Chao; Kuan-Chun, Huang  VIAFID ORCID Logo 
First page
3130
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3239023689
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.