Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Recent advancements in deep learning have significantly enhanced brain tumor segmentation from MRI data, providing valuable support for clinical diagnosis and treatment planning. However, challenges persist in effectively integrating prior medical knowledge, capturing global multimodal features, and accurately delineating tumor boundaries. To address these challenges, the Hybrid Network for Multimodal Brain Tumor Segmentation (HN-MBTS) is proposed, which incorporates prior medical knowledge to refine feature extraction and boundary precision. Key innovations include the Two-Branch, Two-Model Attention (TB-TMA) module for efficient multimodal feature fusion, the Linear Attention Mamba (LAM) module for robust multi-scale feature modeling, and the Residual Attention (RA) module for enhanced boundary refinement. Experimental results demonstrate that this method significantly outperforms existing approaches. On the BraT2020 and BraT2023 datasets, the method achieved average Dice scores of 87.66% and 88.07%, respectively. These results confirm the superior segmentation accuracy and efficiency of the approach, highlighting its potential to provide valuable assistance in clinical settings.

Details

Title
Leveraging Prior Knowledge in a Hybrid Network for Multimodal Brain Tumor Segmentation
Author
Zhou Gangyi  VIAFID ORCID Logo  ; Li, Xiaowei  VIAFID ORCID Logo  ; Zeng Hongran  VIAFID ORCID Logo  ; Zhang Chongyang  VIAFID ORCID Logo  ; Wu Guohang  VIAFID ORCID Logo  ; Zhao Wuxiang  VIAFID ORCID Logo 
First page
4740
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3239086371
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.