Full text

Turn on search term navigation

© 2025. This work is licensed under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Purpose: Glioblastoma multiforme (GBM) is the most common and aggressive malignant brain tumor. Conventional treatments for GBM include surgery, chemotherapy, radiotherapy, or a combination of these. However, emerging therapies, such as hyperthermia treatments, are being developed. One of these new therapies is nanoparticle-mediated photothermal therapy (PTT), a non-invasive treatment that converts light into heat using photoagents such as plasmonic nanoparticles. High molecular weight hyaluronic acid (HA) has been described as a potential inhibitor of tumor progression and exhibits a high affinity for the CD44 receptor, which is present in GBM cells. The in vivo efficacy of gold nanorods (GNRs) biofunctionalized with HA-700kDa in PTT has been evaluated in a murine GBM model.

Animals and Methods: Adult male C57/BL-6 mice (N=15), 3– 8-month-old, were used for PTT experiments. CT2A cells were injected into the mouse brain to establish a GBM model. Tumor-bearing mice were randomly divided into three groups: Control (untreated, n=5), GNRs (injected with GNRs, n=5) and PTT-treated (injected with GNRs and treated with laser, n=5). After GNR injection, mice were irradiated with a laser at 0.98 A (250mW) for 25 min over three consecutive days.

Results: As observed in the analysis of tumor sizes from all MR images, animals treated with a laser following GNR injection exhibited significantly smaller tumor sizes compared to control and GNR-treated animals one week after the treatment. In addition, PTT treatment led to a notable improvement in the exploratory behavior of the treated animals and an increase in their life expectancy compared to untreated control mice.

Conclusion: This study demonstrates the efficacy of GNR-based-PTT, applied to an orthotopic tumor model, using GNRs biofunctionalized with HA to target GBM CT2A cells. The treatment resulted in a reduction in tumor mass and an extension of life expectancy in GNR-PTT treated mice.

Details

Title
Effect of Photothermal Therapy Using Gold Nanoparticles Conjugated with Hyaluronic Acid in an Intracranial Murine Glioblastoma Model
Author
Domingo-Diez, J; Foti, A; Casanova-Carvajal, Ó  VIAFID ORCID Logo  ; Marrodán, L  VIAFID ORCID Logo  ; Granado, N; Satriano, C  VIAFID ORCID Logo  ; Martínez-Murillo, R; Serrano-Olmedo, J J  VIAFID ORCID Logo  ; Ramos-Gómez, M  VIAFID ORCID Logo 
Pages
9327-9346
Section
Original Research
Publication year
2025
Publication date
2025
Publisher
Taylor & Francis Ltd.
ISSN
1176-9114
e-ISSN
1178-2013
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3239445740
Copyright
© 2025. This work is licensed under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.