Full text

Turn on search term navigation

© The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study presents a novel piston-driven pneumatic extrusion system for direct ink writing (DIW), featuring flexible actuation and real-time monitoring of extrusion pressure. The design integrates the benefits of both pressure and feedrate control, achieving consistent linewidth while safeguarding pressure-sensitive materials such as cell-laden hydrogels. The system comprises a lightweight pneumatic syringe on the printhead and a stationary actuation unit, allowing efficient decoupling of motion and extrusion. Experiments demonstrate stable gelatin extrusion with a mean linewidth of 4.32 mm and a minimal increase ratio of 0.012 over printing distance. These findings show promise for advancing DIW with emerging soft materials, particularly in bioprinting and sustainable manufacturing.

Details

Title
Flexibly actuated pneumatic extrusion with in-situ monitoring for direct ink writing of heterogeneous and pressure-vulnerable materials
Author
Sithiwichankit, Chaiwuth 1 ; Suthithanakom, Setthibhak 2 ; Chaiprabha, Kantawatchr 1 ; Melde, Kai 2 ; Chancharoen, Ratchatin 3 

 Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand (ROR: https://ror.org/028wp3y58) (GRID: grid.7922.e) (ISNI: 0000 0001 0244 7875) 
 Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg, Germany (ROR: https://ror.org/038t36y30) (GRID: grid.7700.0) (ISNI: 0000 0001 2190 4373) 
 Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand (ROR: https://ror.org/028wp3y58) (GRID: grid.7922.e) (ISNI: 0000 0001 0244 7875); Human-Robot Collaboration and Systems Integration Research Unit, Chulalongkorn University, Bangkok, Thailand (ROR: https://ror.org/028wp3y58) (GRID: grid.7922.e) (ISNI: 0000 0001 0244 7875) 
Pages
30366
Section
Article
Publication year
2025
Publication date
2025
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3241074916
Copyright
© The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.