Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Recommender systems on digital platforms profoundly influence user behavior through content dissemination, and their diffusion process is similar to the spreading mechanism of infectious diseases to some extent. In this paper, we use a network-based susceptibility-infection (SI) model to model the propagation dynamics of recommended content, and systematically compare the differences in propagation efficiency among three recommendation strategies based on popularity, collaborative filtering, and content. We constructed scale-free user networks based on real-world clickstream data and dynamically adapted the SI model to reflect the realistic scenario of user engagement decay over time. To enhance the understanding of the recommendation process, we further simulate the visualization changes of the propagation process to show how the content spreads among users. The experimental results show that collaborative filtering performs superior in the initial dissemination, but its dissemination effect decays rapidly over time and is weaker than the other two methods. This study provides new ideas for modeling and understanding recommender systems from an epidemiological perspective.

Details

Title
Modeling Recommender Systems Using Disease Spread Techniques
Author
He Peixiong 1   VIAFID ORCID Logo  ; Sun, Libo 1 ; Gao Xian 2   VIAFID ORCID Logo  ; Zhou, Yi 2 ; Xiao, Qin 1   VIAFID ORCID Logo 

 Department of Computer Science and Software Engineering, Auburn University, Auburn, AL 36849, USA; [email protected] (P.H.); [email protected] (L.S.) 
 TSYS School of Computer Science, Columbus State University, Columbus, GA 31907, USA; [email protected] 
First page
687
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20782489
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3244039808
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.