Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Addressing the limitations of traditional fatigue life prediction methods, which rely on extensive experimental data and incur high costs, and given the current absence of studies that employ deformation inhomogeneity parameters to construct fatigue-indicator parameter (FIP) for predicting low-cycle fatigue (LCF) life of metals in hydrogen environments, this study firstly explores how hydrogen pre-charging influences the LCF behavior of hot-rolled ribbed bar grade 400 (HRB400) steel via experimental and crystal plasticity simulation, and focus on the relationship between the fatigue life and the evolution of microscale deformation inhomogeneity. The experimental results indicate that hydrogen charging causes alterations in cyclic hysteresis, an expansion of the elastic range of the stabilized hysteresis loop, and a significant reduction in LCF life. Secondly, a novel FIP was developed within the crystal plasticity finite element method (CPFEM) framework to predict the LCF life of HRB400 steel under hydrogen influence. This FIP incorporates three internal variables: hydrogen embrittlement index, axial strain variation coefficient, and macroscopic stress ratio. These variables collectively account for the hydrogen charging effects and stress peak impacts on the microscale deformation inhomogeneity. The LCF life of hydrogen-charged HRB400 steel can be predicted using this new FIP. We performed fatigue testing under only one loading condition to measure the corresponding fatigue life and determine the FIP critical value. This helped predict fatigue life under different cyclic loading conditions for the same hydrogen-charged material. We compared the experimental data to validate the novel FIP to accurately predict the LCF life of hydrogen-charged HRB400 steel. The error between the predicted results and the measured results is limited to a factor of two.

Details

Title
Low Cycle Fatigue Life Prediction for Hydrogen-Charged HRB400 Steel Based on CPFEM
Author
Zeng Bin 1   VIAFID ORCID Logo  ; Xue-Fei, Wei 2   VIAFID ORCID Logo  ; Ji-Zuan, Tan 3 ; Ke-Shi, Zhang 4   VIAFID ORCID Logo 

 School of Civil Engineering and Transportation, Foshan University, Foshan 528225, China; [email protected] 
 School of Mechatronic Engineering and Automation, Foshan University, Foshan 528225, China 
 School of Civil Engineering and Architecture, Baise University, Baise 533000, China; [email protected] 
 Key Lab of Disaster Prevention and Structural Safety, School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China 
First page
3920
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3244045736
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.