Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Additive manufacturing (3D printing) using Computer-Aided Design (CAD) has emerged as a cost-effective alternative to subtractive milling in restorative dentistry, offering reduced material waste and lower production costs. This study aimed to compare the physical properties, specifically water sorption, water solubility, and surface roughness, of milled and 3D-printed hybrid resin composite materials. Standardized disk-shaped samples were fabricated using a digital workflow. The additive group included 15 samples printed with a DLP printer using CROWNTEC resin at three different orientations (0°, 45°, and 90°), with five samples prepared at each printing orientation. The subtractive group consisted of specimens milled from the SHOFU DISK hybrid resin composite. Surface roughness samples were also prepared for both methods. Statistical analysis using one-way ANOVA, post hoc tests, and paired t-tests revealed significant differences among groups in all tested properties (p < 0.001). Subtractive manufacturing consistently outperformed additive techniques. Among the printed groups, orientation at 0° showed the most favorable outcomes. Moreover, polishing significantly improved surface roughness in both manufacturing methods (p < 0.001). These findings emphasize the influence of the fabrication method and printing orientation on the clinical performance of hybrid resin composites, highlighting the importance of polishing in optimizing the surface quality for 3D-printed restorations.

Details

Title
Physical Assessment of CAD/CAM and 3D-Printed Resin-Based Ceramics Integrating Additive and Subtractive Methods
Author
Alanazi, Khalid K 1   VIAFID ORCID Logo  ; Elkaffas, Ali A 2   VIAFID ORCID Logo 

 Conservative Dental Science Department, College of Dentistry, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; [email protected] 
 Conservative Dental Science Department, College of Dentistry, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; [email protected], Department of Operative Dentistry, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt 
First page
2168
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3244051086
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.