Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Deep learning (DL) and machine learning (ML) models have been successfully applied across multiple domains, but generic architectures often underperform without domain-specific adaptation. This study presents A-BERT, a BERT-based model fine-tuned on a dataset of aviation and aircraft-related academic publications, enabling accurate classification into 14 thematic categories. The temporal evolution of publication counts in each category was then modeled using ARIMA to forecast future research trends in the aviation sector. As a proof of concept, A-BERT outperformed the baseline BERT in several key metrics, offering a reliable approach for large-scale, domain-specific literature classification. Forecast validation through walk-forward testing across multiple time windows yielded Root Mean Square Error (RMSE) values below 2% for all categories, confirming high predictive reliability within this controlled setting. While the framework demonstrates the potential of combining domain-specific text classification with validated time series forecasting, its extension to operational aviation datasets will require further adaptation and external validation.

Details

Title
Artificial Intelligence and Aviation: A Deep Learning Strategy for Improved Data Classification and Management
Author
Lázaro, Flávio L 1   VIAFID ORCID Logo  ; Santos Luís F. F. M. 2   VIAFID ORCID Logo  ; Duarte, Valério 3   VIAFID ORCID Logo  ; Melicio Rui 4   VIAFID ORCID Logo 

 Institute of Mechanical Engineering (IDMEC), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; [email protected] (F.L.L.); [email protected] (D.V.), Faculdade de Engenharia, Universidade Agostinho Neto, Av. 21 de Janeiro, Luanda 1756, Angola 
 ISEC Lisboa, Alameda das Linhas de Torres, 179, 1750-142 Lisboa, Portugal; [email protected], Aeronautics and Astronautics Research Center (AEROG), Universidade da Beira Interior, Calçada Fonte do Lameiro, 6200-358 Covilhã, Portugal 
 Institute of Mechanical Engineering (IDMEC), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; [email protected] (F.L.L.); [email protected] (D.V.) 
 Institute of Mechanical Engineering (IDMEC), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; [email protected] (F.L.L.); [email protected] (D.V.), Aeronautics and Astronautics Research Center (AEROG), Universidade da Beira Interior, Calçada Fonte do Lameiro, 6200-358 Covilhã, Portugal, Synopsis Planet, Advance Engineering Unipessoal LDA, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 16, 1749-016 Lisboa, Portugal 
First page
9403
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3249675780
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.