Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The subject of the research in this article were experimental tests of the M-346 Master aircraft model, carried out in a wind tunnel using the 3D printing method (FDM) in terms of the impact of surface post-processing technology on its aerodynamic characteristics. The measurements of key aerodynamic parameters concerned forces and moments in various airflow conditions taking into account variable angles of attack at a constant sideslip angle. The main purpose of the work was to verify the hypothesis that properly performed surface treatment significantly affects the accuracy of actual aerodynamic measurements in terms of solving the research problem using the post-processing technology, to conduct selected tests in a wind tunnel and analyze the obtained results. The obtained results of the tests, which showed a significant impact of the technological parameters of 3D printing and surface treatment methods on the correctness of the representation of real aerodynamic characteristics, were used mainly to analyze the aerodynamic performance of the model, verify the distribution of forces and moments, and evaluate the behavior of the structure in various flight scenarios. The obtained research results, the analysis of the obtained results, and selected tests were used to present important observations and formulate practical conclusions.

Details

Title
Aerodynamic Testing of a 3D-Printed Aircraft Model with a Post-Processed Surface
Author
Setlak Lucjan 1 ; Kowalik Rafał 1   VIAFID ORCID Logo  ; Lusiak Tomasz 2 

 Department of Avionics and Control Systems, Polish Air Force University, 08-521 Deblin, Poland; [email protected] 
 Department of Thermodynamics, Lublin University of Technology, 20-618 Lublin, Poland; [email protected] 
First page
3996
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3249703459
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.