Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Radio frequency (RF) fingerprinting, as an emerging physical layer security technology, demonstrates significant potential in the field of Internet of Things (IoT) security. However, most existing methods operate under a ‘closed-set’ assumption, failing to effectively address the continuous emergence of unknown devices in real-world scenarios. To tackle this challenge, this paper proposes an open-set radio frequency fingerprint identification (RFFI) method based on Multi-Task Prototype Learning (MTPL). The core of this method is a multi-task learning framework that simultaneously performs discriminative classification, generative reconstruction, and prototype clustering tasks through a deep network that integrates an encoder, a decoder, and a classifier. Specifically, the classification task aims to learn discriminative features with class separability, the generative reconstruction task aims to preserve intrinsic signal characteristics and enhance detection capability for out-of-distribution samples, and the prototype clustering task aims to promote compact intra-class distributions for known classes by minimizing the distance between samples and their class prototypes. This synergistic multi-task optimization mechanism effectively shapes a feature space highly conducive to open-set recognition. After training, instead of relying on direct classifier outputs, we propose to adopt extreme value theory (EVT) to statistically model the tail distribution of the minimum distances between known class samples and their prototypes, thereby adaptively determining a robust open-set discrimination threshold. Comprehensive experiments on a real-world dataset with 16 Wi-Fi devices show that the proposed method outperforms five mainstream open-set recognition methods, including SoftMax thresholding, OpenMax, and MLOSR, achieving a mean AUROC of 0.9918. This result is approximately 1.7 percentage points higher than the second-best method, demonstrating the effectiveness and superiority of the proposed approach for building secure and robust wireless authentication systems. This validates the effectiveness and superiority of our approach in building secure and robust wireless authentication systems.

Details

Title
Open-Set Radio Frequency Fingerprint Identification Method Based on Multi-Task Prototype Learning
Author
Zhao, Ma; Fang Shengliang; Fan Youchen
First page
5415
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3249714321
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.