Abstract
Urban transportation systems are facing severe challenges due to the rapid growth of the urban population, especially in China. Suspended monorail system (SMS), as a sky rail transportation form, can effectively alleviate urban traffic congestion due to its independent right-of-way and minimal ground footprint. However, the SMS possesses a special traveling system with unique vehicle structure and bridge configuration, which results in significant differences in both the mechanisms and dynamics problems associated with train–bridge interaction (TBI) when contrasted with those of traditional railway systems. Therefore, a thorough understanding of the SMS dynamics is essential for ensuring the operational safety of the system. This article presents a state-of-the-art review of the TBI modeling methodologies, critical dynamic features, field tests, and practice of the SMS in China. Firstly, the development history, technical features, and potential dynamics problems of the SMS are briefly described, followed by the mechanical characteristics and mechanisms of the train–bridge interactive systems. Then, the modeling methodology of the fundamental elements in the suspended monorail TBI is systematically reviewed, including the suspended train subsystem, bridge subsystem, train–bridge interaction relationships, system excitations, and solution method. Further, the typical dynamic features of the TBI under various operational scenarios are elaborated, including different train speeds, a variety of line sections, and a natural wind environment. Finally, the first new energy-based SMS test line in the world is systematically introduced, including the composition and functionality of the system, the details of the conducted field tests, and the measured results of the typical dynamic responses. At the end of the paper, both the guidance on further improvement of the SMS and future research topics are proposed.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Southwest Jiaotong University, Train and Track Research Institute, State Key Laboratory of Rail Transit Vehicle System, Chengdu, China (GRID:grid.263901.f) (ISNI:0000 0004 1791 7667)
2 Southwest Jiaotong University, Department of Intelligent Construction, Institute of Smart City and Intelligent Transportation, Chengdu, China (GRID:grid.263901.f) (ISNI:0000 0004 1791 7667)