Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Hydrogen embrittlement (HE) can significantly degrade the mechanical properties of steels. This phenomenon is particularly relevant for high-strength steels where large elastic stresses lead to detrimental localized concentrations of hydrogen at defects. In this study, unnotched rotating bending specimens of the bearing steel SAE 52100 (100Cr6) quenched and tempered at 180 °C and 400 °C were electrochemically charged with hydrogen. Charged and non-charged specimens then underwent rotating bending fatigue testing, either immediately after charging or after aging at room temperature up to 72 h. The hydrogen-charged specimens annealed at 180 °C showed a sizeable drop in fatigue limit and fatigue lifetime compared to the non-charged specimens with cracks mainly originating from near-surface non-metallic inclusions. In comparison, the specimens annealed at 400 °C exhibited a moderate drop in fatigue limit and lifetime due to hydrogen charging with cracks originating mostly from the surface. Aging had only insignificant effects on the fatigue lifetime. Notably, annealing of charged samples for 2 h at 180 °C restored their lifetime to that of non-charged specimens.

Details

Title
Influence of Electrolytic Hydrogen Charging and Effusion Aging on the Rotating Bending Fatigue Resistance of SAE 52100 Steel
Author
Wild, Johannes  VIAFID ORCID Logo  ; Wagner, Stefan; Pundt Astrid  VIAFID ORCID Logo  ; Guth, Stefan  VIAFID ORCID Logo 
First page
30
Publication year
2025
Publication date
2025
Publisher
MDPI AG
ISSN
26245558
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3254478866
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.