Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Human Leukocyte Antigen (HLA) Class II (HLA-II) molecules bind peptides of phagocytosed non-self proteins and present them on the cell surface to circulating CD4+ T lymphocytes. A successful binding of the presented peptide with the T cell receptor (TCR) activates the CD4+ T cell, leading to the production of antibodies against the peptide (and the protein of its origin) by the B cell and augmentation of the cytotoxic and memory functions of CD8+ T cells. The first and essential step in this process is the successful formation of a stable peptide-HLA-II complex (pHLA-II), which is achieved when the peptide binds with high affinity to the HLA-II molecule. Such highly antigenic non-self peptides occur in melanoma-associated proteins and could be used as antitumor agents when bound to a matching HLA-II molecule. The objective of this study was to identify such peptides from 15 melanoma-associated proteins. We determined in silico the predicted binding affinity (IC50) of all pHLA-II pairs between 192 common HLA-II molecules and all possible linear 15-amino acid (15-mer) peptides (epitopes) of 15 known melanoma-associated antigens (N = 3466 epitopes) for a total of 192 × 3466 = 665,472 determinations. From this set, we identified epitopes with strong antigenicity (predicted best binding affinity [PBBA] IC50 < 50 nM). Of a total of 665,472 pHLA-II tested, 5941 (0.89%) showed strong PBBA, stemming from 117 HLA-II alleles and 679 distinct epitopes. This set of 5941 pHLA-II pairs with predicted high antigenicity possesses the requisite information for devising multipeptide vaccines with those epitopes alone or in combination with the corresponding HLA-II molecules. The results obtained have a major implication for cancer therapy, namely that the administration of subsets of the 679 high antigenicity epitopes above, alone or in combination with their associated HLA-II molecules, would be successful in engaging CD4+ T helper lymphocytes to augment the cytotoxic action and memory of CD8+ T lymphocytes and induce the production of antitumor antibodies by B cells. This therapy would be effective in other solid tumors (in addition to melanoma) and would be enhanced by concomitant immunotherapy with immune checkpoint inhibitors.

Details

Title
mRNA Multipeptide-HLA Class II Immunotherapy for Melanoma
Author
Georgopoulos, Apostolos P 1 ; James, Lisa M 2 ; Sanders, Matthew 1 

 The HLA Cancer Research Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis VAMC, One Veterans Drive, Minneapolis, MN 55417, USA; [email protected] (L.M.J.); [email protected] (M.S.), Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA, Institute for Health Informatics, University of Minnesota Medical School, Minneapolis, MN 55455, USA 
 The HLA Cancer Research Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis VAMC, One Veterans Drive, Minneapolis, MN 55417, USA; [email protected] (L.M.J.); [email protected] (M.S.), Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA, Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN 55455, USA 
First page
1430
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20734409
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3254480161
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.