Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The evolution of ore-forming fluids in gold precipitation is a key aspect in understanding the genesis of orogenic gold deposits. Traditional fluid inclusion analyses are often limited in revealing the fluid property changes during mineralization, leading to significant debates on the mineralization temperature and fluid sources. In this study, we selected the Liba gold deposit in the West Qinling orogen and employed scanning electron microscope–cathodoluminescence (SEM-CL) and laser ablation–inductively coupled plasma mass spectrometry (LA-ICPMS) to analyze the microstructure and trace element characteristics of quartz veins, revealing the multi-stage evolution of ore-forming fluids and the mineralization mechanisms. SEM-CL imaging identified five distinct quartz stages. The pre-mineralization (Qz0) and early-stage mineralization (Qz1) fluids were predominantly magmatic–metamorphic in origin, as indicated by relatively high δ18O and δD values. During the primary metallogenic (Qz2a, Qz2b) and late-stage mineralization (Qz3), temperatures progressively decreased, and the gradual mixing of meteoric water and formation water was observed, which promoted gold precipitation. And the content of trace elements in post-mineralization quartz (Qz4) is significantly lower and similar to that in the Qz0 stage. Through the analysis of quartz trace elements (e.g., Al/Ti, Ge/Al ratios) and isotope data (δ18O = 8.25‰ to 12.67‰, δD = −119.1‰ to −79.8‰), the results indicate that the Liba gold deposit is a medium- to low-temperature orogenic gold deposit. Furthermore, the gold enrichment process was primarily driven by a hydrothermal system, with variations in the fluid composition during mineralization contributing to the concentration of gold.

Details

Title
The Fluid Evolution and Metallogenic Processes of the Liba Gold Deposit, West Qinling, China: Insights from the Texture, Trace Elements, and H-O Isotope Geochemistry of Quartz
Author
Chen, Yu 1 ; Wang Yuwang 2 ; Wang, Jianping 3   VIAFID ORCID Logo  ; Li Dedong 2 ; Geng Jian 2 ; Luo Jianxiang 4 ; Wang, Rui 4 

 School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China, Beijing Institute of Geology for Mineral Resources Co., Ltd., Beijing 100012, [email protected] (J.G.) 
 Beijing Institute of Geology for Mineral Resources Co., Ltd., Beijing 100012, [email protected] (J.G.) 
 School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China 
 Longnan Zijin Mining Co., Ltd., Longnan 742500, China 
First page
956
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
2075163X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3254605664
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.