Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Ore mining and smelting are often related to environmental pollution. This study provides information about the geochemical features of Technosols at historical mining and metallurgical sites in the Tatra Mountains, southern Poland, evaluating the contents of potentially toxic trace elements (PTTE) and their behaviours in soils, as well as the influence of soil properties on PTTE mobility. Thirteen soil profiles were studied in eight abandoned mining and smelting sites. PTTE concentrations, including rare earth elements (REE), were measured using ICP-MS and ICP-OES. Selected elements (Cu, Zn, Pb, Cd, As, Sb, Ba, Sr, Co, Ni, Mn and Cr) were fractionated using the modified European Community Bureau of Reference (BCR) four-step sequential extraction. Contamination of soils with PTTE was compared against Polish regulatory limits, which were exceeded for Cu, Zn, Pb, Mo, Hg, As, Co, Ni and Ba, with concentrations exceeding limits by 16, 18, 34 and 160 times for Cu, Hg, As and Ba, respectively, in some profiles. Based on geochemical features depending on parent material properties, the soils examined were divided into three groups. Group I Technosols (near-neutral soils developed from Fe/Mn-ore and carbonate-bearing mining waste) were particularly enriched in Co, Ni, Mn and REE. Group II Technosols (acidic soils developed from polymetallic ore-bearing aluminosilicate mining waste) contained elevated concentrations of Cu, Zn, Hg, As, Sb, Bi, Co, Ag, Ba, Sr, U and Th; they contained lower contents of REE than Group I Technosols. Group III Technosols (soils developed in smelting-affected areas and containing metallurgical waste) were rich in Cu, As, Sb, Ba, Hg, Co and Ag and contained the lowest REE contents among the studied soils. Sequential BCR extraction revealed that PTTE mobility varied strongly according to soil group, with higher mobility of Mn, Cu and Zn in acidic polymetallic ore-derived soils (Group II), while carbonate-rich soils (Group I) showed mainly immobile forms. Metallurgical slag-derived soils (Group III) exhibited complex PTTE behaviour controlled by organic matter and Fe/Mn oxides. Soil properties (pH, carbonates and TOC) seem to control PTTE mobility.

Details

Title
Geochemical Features and Mobility of Trace Elements in Technosols from Historical Mining and Metallurgical Sites, Tatra Mountains, Poland
Author
Tarnawczyk Magdalena 1   VIAFID ORCID Logo  ; Uzarowicz Łukasz 1   VIAFID ORCID Logo  ; Kwasowski Wojciech 1   VIAFID ORCID Logo  ; Pędziwiatr Artur 1   VIAFID ORCID Logo  ; Martín-Peinado, Francisco José 2   VIAFID ORCID Logo 

 Department of Soil Science, Institute of Agriculture, Warsaw University of Life Sciences—SGGW, Nowoursynowska Str. 159, Building no. 37, 02-776 Warsaw, Poland 
 Departamento de Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva, s/n, 18071 Granada, Spain 
First page
988
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
2075163X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3254606200
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.