Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Accurate path travel time prediction is often hindered by sparse and heterogeneous traffic data. This paper proposes FusionODE-TT, a novel model designed to address these challenges by modeling traffic as a continuous-time process. The model features a Recurrent Neural Network encoder that processes multi-source time-series data to initialize a latent state vector, which then evolves over the prediction horizon using a Neural Ordinary Differential Equation (NODE). The core innovation is a guided fusion mechanism that leverages sparse but high-fidelity Automatic Vehicle Identification (AVI) data to apply strong, event-based corrections to the model’s continuous latent state, mitigating error accumulation in the prediction process. Experiments were conducted on a real-world dataset comprising AVI, GPS, and point sensor data from a major urban expressway. The experimental results demonstrate that the proposed model achieves superior accuracy, outperforming a suite of baseline models in terms of prediction accuracy and robustness. Furthermore, a comprehensive ablation study was performed to validate the efficacy of our design. The study quantitatively confirms that both the continuous-time dynamics modeled by the NODE and the guided fusion mechanism are essential components, each providing a significant and independent contribution to the model’s overall performance.

Details

Title
Enhanced Path Travel Time Prediction via Guided Fusion of Heterogeneous Sensors Using Continuous-Time Dynamics
Author
Ang, Li  VIAFID ORCID Logo  ; Qian Hanqiang  VIAFID ORCID Logo  ; Chen, Yanyan  VIAFID ORCID Logo 
First page
5873
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3254645391
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.