Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Clinical application of AI/DL-aided acquisitions for quantitative bi-parametric (q-bp)MRI requires validation and harmonization across vendor platforms. An AI/DL-accelerated q-bpMRI, including 5-echo T2 and 4-b-value apparent diffusion coefficient (ADC) mapping, was implemented on two 3T clinical scanners by two vendors alongside the qualitative standard-of-care (SOC) MRI protocols for six patients with biopsy-confirmed prostate cancer (PCa). AI/DL versus SOC bpMRI image quality was compared for MR-visible PCa lesions on a 4-point Likert-like scale. Quantitative validation and protocol bias assessment were performed using a multiparametric phantom with reference T2 and diffusion kurtosis values mimicking prostate tissue ranges. Six-minute q-bpMRI achieved acceptable diagnostic quality comparable to the SOC. Better SNR was observed for DL/AI versus SOC ADC with method-dependent distortion susceptibility and resolution enhancement. The measured biases were unaffected by AI/DL reconstruction and related to acquisition protocol parameters: constant for spin-echo T2 (−7 ms to +5 ms) and ADC (4b-fit: −0.37 µm2/ms and 2b-fit: −0.19 µm2/ms), while nonlinear for echo-planar T2 (−37 ms to +14 ms). Measured phantom ADC bias dependence on b-value range was consistent with that observed for PCa lesions. Bias correction harmonized lesion T2 and ADC values across different AI/DL-aided q-bpMRI acquisitions. The developed workflow enables harmonization of AI/DL-accelerated quantitative T2 and ADC mapping in multi-vendor clinical settings.

Details

Title
Cross-Scanner Harmonization of AI/DL Accelerated Quantitative Bi-Parametric Prostate MRI †
Author
Dariya, Malyarenko 1   VIAFID ORCID Logo  ; Swanson, Scott D 1   VIAFID ORCID Logo  ; Richardson, Jacob 1 ; Lowe, Suzan 1 ; O’Connor James 1 ; Jiang, Yun 1   VIAFID ORCID Logo  ; Chahine Reve 1 ; Wells, Shane A 2 ; Chenevert, Thomas L 1 

 Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA 
 Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA, Department of Urology, University of Michigan Medical School, Ann Arbor, MI 48109, USA 
First page
5858
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3254645690
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.