Full text

Turn on search term navigation

© 2025 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study aimed to investigate the potential compensatory role of plasma exosomal microRNAs (miRNAs), particularly miR-320b, in mitigating early myocardial damage in severe obstructive sleep apnea (OSA) patients without comorbidities. AC16 human cardiomyocytes were co-incubated with plasma exosomes isolated from healthy volunteers (Ctrl-exo) and patients with uncomplicated severe OSA (OSA-exo). Functional assays revealed that OSA-exo significantly enhanced AC16 cell viability, promoted proliferation, and reduced apoptosis. RNA sequencing (RNA-seq) identified 14 myocardial function-related mRNAs in AC16 cardiomyocytes differentially influenced by OSA-exo. Out of the 14 mRNAs, FOXM1, a critical regulator of cardiomyocyte stress response, survival, and regeneration, was verified to be upregulated by OSA-exo by RT-qPCR. Bioinformatic analysis predicted a regulatory relationship between miR-320b and FOXM1, which was confirmed by a dual-luciferase reporter assay. MiR-320b was found to be downregulated in OSA-exo by RT-qPCR. MiR-320b overexpression downregulated FOXM1, induced G0/G1 cell cycle arrest, reduced cell viability, and increased apoptosis. In a mouse model of chronic intermittent hypoxia (CIH), myocardial FOXM1 exhibited a biphasic expression pattern during disease progression. After 4 weeks of CIH exposure, the mouse myocardium exhibited significantly increased FOXM1 expression and reduced levels of apoptosis compared to control, suggesting an early compensatory response. However, after 12 weeks of CIH exposure, decreased myocardial FOXM1 expression and increased apoptosis were detected, suggesting that the early compensatory protective mechanism was overwhelmed by myocardial injury caused by chronic hypoxia, leading to enhanced cardiomyocyte apoptosis and consequent FOXM1 downregulation. These results suggested that miR-320b downregulation in OSA-exo may serve as a compensatory mechanism to protect against early myocardial injury through the upregulation of FOXM1, highlighting miR-320b and FOXM1 as potential therapeutic targets for OSA-associated cardiomyopathy.

Details

Title
Exosomal miR-320b regulates cardiomyocyte FOXM1 expression and may serve as an early-stage compensatory mechanism in obstructive sleep apnea
Author
Wan-yu, Wang; Zhi-jia, Chen; Ya-juan Lai; Lin-lin, Guo; Ao Xiong; Zhen-yong, Huang; Xiang-yang, Yao; Yi-ming, Zeng  VIAFID ORCID Logo 
First page
e0332862
Section
Research Article
Publication year
2025
Publication date
Sep 2025
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3254877933
Copyright
© 2025 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.