Full text

Turn on search term navigation

Nonlinear Processes in Geophysics 2006

Abstract

As conceptual model for a cloud a system is considered which is open for condensate mass transport and subject to internal processes such as cloud microphysical transformation and vertical condensate transport. The effects of microphysical processes are represented in parameterized form and the system is divided into two layers to account for the vertical structure. The evolution is mathematically described in terms of four coupled nonlinear ODEs; the prognostic variables are the mass concentrations of cloud water as well as precipitation condensate in each of the layers. In the absence of vertical velocity the evolution in the lower layer is triggered by the evolution in the upper layer. In the presence of an upwind, the dynamics in both layers is mutually coupled. Depending on the chosen parameter values up to four steady states are found. When varying the parameter upwind velocity, three regimes are distinguished: For week upwind the long-term evolution is steered by the external sources; for stronger upwind the cloud condensate is blown out of the cloud in the final state and does not contribute to formation of precipitation; for intermediate upwind multiple steady state solution branches arise which characterize the transition between those two regimes.[PUBLICATION ABSTRACT]

Details

Title
Nonlinear effects in a conceptual multilayer cloud model
Author
Wacker, U.
Pages
n/a
Publication year
2006
Publication date
2006
Publisher
Copernicus GmbH
ISSN
1023-5809
e-ISSN
1607-7946
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
518289266
Copyright
Nonlinear Processes in Geophysics 2006