[A & I plus PDF only]
COPYRIGHT: © Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Nonlinear Processes in Geophysics 2009
Abstract
The multi-scale nature and climate noise properties of teleconnection indices are examined by using the Empirical Mode Decomposition (EMD) procedure. The EMD procedure allows for the analysis of non-stationary time series to extract physically meaningful intrinsic mode functions (IMF) and nonlinear trends. The climatologically relevant monthly mean teleconnection indices of the North Atlantic Oscillation (NAO), the North Pacific index (NP) and the Southern Annular Mode (SAM) are analyzed.
The significance of IMFs and trends are tested against the null hypothesis of climate noise. The analysis of surrogate monthly mean time series from a red noise process shows that the EMD procedure is effectively a dyadic filter bank and the IMFs (except the first IMF) are nearly Gaussian distributed. The distribution of the variance contained in IMFs of an ensemble of AR(1) simulations is nearly [chi-squared] distributed. To test the statistical significance of the IMFs of the teleconnection indices and their nonlinear trends we utilize an ensemble of corresponding monthly averaged AR(1) processes, which we refer to as climate noise. Our results indicate that most of the interannual and decadal variability of the analysed teleconnection indices cannot be distinguished from climate noise. The NP and SAM indices have significant nonlinear trends, while the NAO has no significant trend when tested against a climate noise hypothesis. [PUBLICATION ABSTRACT]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer