[A & I plus PDF only]
COPYRIGHT: © Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Nonlinear Processes in Geophysics 2008
Abstract
We present results from a computational study of predictability in fully-developed baroclinically unstable laboratory flows. This behaviour is studied in the Met Office/Oxford Rotating Annulus Laboratory Simulation - a model of the classic rotating annulus laboratory experiment with differentially heated cylindrical sidewalls, which is firmly established as an insightful laboratory analogue for certain kinds of atmospheric dynamical behaviour. This work is the first study of "predictability of the first kind" in the annulus experiment. We devise an ensemble prediction scheme using the breeding method to study the predictability of the annulus in the perfect model scenario. This scenario allows one simulation to be defined as the true state, against which all forecasts are measured. We present results from forecasts over a range of quasi-periodic and chaotic annulus flow regimes. A number of statistical and meteorological techniques are used to compare the predictability of these flows: bred vector growth rate and dimension, error variance, "spaghetti plots", probability forecasts, Brier score, and the Kolmogorov-Smirnov test. These techniques gauge both the predictability of the flow and the performance of the ensemble relative to a forecast using a climatological distribution. It is found that in the perfect model scenario, the two quasi-periodic regimes examined may be indefinitely predictable. The two chaotic regimes (structural vacillation and period doubled amplitude vacillation) show a loss of predictability on a timescale of hundreds to thousands of seconds (65-280 annulus rotation periods, or 1-3 Lyapunov times). [PUBLICATION ABSTRACT]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer