[A & I plus PDF only]
COPYRIGHT: © Author(s) 2006. This work is licensed under a Creative Commons License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Nonlinear Processes in Geophysics 2006
Abstract
The majority of data sets in the geosciences are obtained from observations and measurements of natural systems, rather than in the laboratory. These data sets are often full of gaps, due to to the conditions under which the measurements are made. Missing data give rise to various problems, for example in spectral estimation or in specifying boundary conditions for numerical models. Here we use Singular Spectrum Analysis (SSA) to fill the gaps in several types of data sets. For a univariate record, our procedure uses only temporal correlations in the data to fill in the missing points. For a multivariate record, multi-channel SSA (M-SSA) takes advantage of both spatial and temporal correlations. We iteratively produce estimates of missing data points, which are then used to compute a self-consistent lag-covariance matrix; cross-validation allows us to optimize the window width and number of dominant SSA or M-SSA modes to fill the gaps. The optimal parameters of our procedure depend on the distribution in time (and space) of the missing data, as well as on the variance distribution between oscillatory modes and noise. The algorithm is demonstrated on synthetic examples, as well as on data sets from oceanography, hydrology, atmospheric sciences, and space physics: global sea-surface temperature, flood-water records of the Nile River, the Southern Oscillation Index (SOI), and satellite observations of relativistic electrons.[PUBLICATION ABSTRACT]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer