[A & I plus PDF only]
COPYRIGHT: © Author(s) 2010. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Atmospheric Chemistry and Physics 2010
Abstract
The emission of dimethyl-sulphide (DMS) gas by phytoplankton and the subsequent formation of aerosol has long been suggested as an important climate regulation mechanism. The key aerosol quantity is the number concentration of cloud condensation nuclei (CCN), but until recently global models did not include the necessary aerosol physics to quantify CCN. Here we use a global aerosol microphysics model to calculate the sensitivity of CCN to changes in DMS emission using multiple present-day and future sea-surface DMS climatologies. Calculated annual fluxes of DMS to the atmosphere for the five model-derived and one observations based present day climatologies are in the range 15.1 to 32.3 Tg a-1 sulphur. The impact of DMS climatology on surface level CCN concentrations was calculated in terms of summer and winter hemispheric mean values of δCCN/δFluxDMS , which varied between -43 and +166 cm-3 /(mg m-2 day-1 sulphur), with a mean of 63 cm-3 /(mg m-2 day-1 sulphur). The range is due to CCN production in the atmosphere being strongly dependent on the spatial distribution of the emitted DMS. The relative sensitivity of CCN to DMS (i.e. fractional change in CCN divided by fractional change in DMS flux) depends on the abundance of non-DMS derived aerosol in each hemisphere. The relative sensitivity averaged over the five present day DMS climatologies is estimated to be 0.02 in the northern hemisphere (i.e. a 0.02% change in CCN for a 1% change in DMS) and 0.07 in the southern hemisphere where aerosol abundance is lower. In a globally warmed scenario in which the DMS flux increases by ~1% relative to present day we estimate a ~0.1% increase in global mean CCN at the surface. The largest CCN response occurs in the Southern Ocean, contributing to a Southern Hemisphere mean annual increase of less than 0.2%. We show that the changes in DMS flux and CCN concentration between the present day and global warming scenario are similar to interannual differences due to variability in windspeed. In summary, although DMS makes a significant contribution to global marine CCN concentrations, the sensitivity of CCN to potential future changes in DMS flux is very low. This finding, together with the predicted small changes in future seawater DMS concentrations, suggests that the role of DMS in climate regulation is very weak.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer