[A & I plus PDF only]
COPYRIGHT: © Author(s) 2010. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Biogeosciences 2010
Abstract
Discharge of groundwater and associated chemical compounds into coastal karstic regions, which are abundant in the Mediterranean basin, is envisaged to be significant. In this study, we evaluate the groundwater discharge and its nutrient load to the open karstic site of Badum (Castelló, East Spain). Salinity profiles evidenced that groundwater discharge from coastal brackish springs causes a buoyant fresher layer, as identified with thermal infrared images. Chemical tracers (radium isotopes, dissolved inorganic silicate and seawater major elements) have been used to determine a brackish groundwater proportion in coastal waters of 36% in October 2006 and 44% in June 2007. Based on a radium-derived residence time of 2.7 days in October 2006 and 2.0 days in June 2007, total SGD fluxes have been estimated in 71 500 and 187 000 m3 d-1 , respectively, with fresh-SGD contributions representing 71% and 85%. The calculated SGD-associated nutrient fluxes, most likely of natural origin, were 1500 and 8300 μmol m-2 d-1 of DIN and 19 and 40 μmol m-2 d-1 of DIP in October 2006 and June 2007, respectively. These inputs may actually lead to or enhance P limitation, thereby altering the structure of biological communities in the area.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer