[A & I plus PDF only]
COPYRIGHT: © Author(s) 2010. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Atmospheric Chemistry and Physics 2010
Abstract
The spatial distribution of the aerosols over 86 Chinese cities was reconstructed from air pollution index (API) records for summer 2000 to winter 2006. PM10 (particulate matter ≤10 μm) mass concentrations were calculated for days when PM10 was the principal pollutant, these accounted for 91.6% of the total 150 428 recorded days. The 83 cities in mid-eastern China (100° E to 130° E) were separated into three latitudinal zones using natural landscape features as boundaries. Areas with high PM10 level in northern China (127 to 192 μg m-3 ) included Urumchi, Lanzhou-Xining, Weinan-Xi'an, Taiyuan-Datong-Yangquan-Changzhi, Pingdingshan-Kaifeng, Beijing-Tianjin-Shijiazhuang, Jinan, and Shenyang-Anshan-Fushun; in the middle zone, high PM10 (119-147 μg m-3 ) occurred at Chongqing-Chengdu-Luzhou, Changsha-Wuhan, and Nanjing-Hangzhou; in the southern zone, only four cities (Qujing, Guiyang, Guangzhou and Shaoguan) showed PM10 concentration >80 μg m-3 . The median PM10 concentration decreased from 108 μg m-3 for the northern cities to 95 μg m-3 and 55 μg m-3 for the middle and southern zones, respectively. PM10 concentration and the APIs both exhibited wintertime maxima, summertime minima, and the second highest values in spring. PM10 showed evidence for a decreasing trend for the northern cities while in the other zones urban PM10 levels fluctuated, but showed no obvious change over time. The spatial distribution of PM10 was compared with the emissions, and the relationship between the surface PM10 concentration and the aerosol optical depth (AOD) was also discussed.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer