Full Text

Turn on search term navigation

Copyright © 2010 Eveline Farias-Hesson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Next-generation sequencing platforms are powerful technologies, providing gigabases of genetic information in a single run. An important prerequisite for high-throughput DNA sequencing is the development of robust and cost-effective preprocessing protocols for DNA sample library construction. Here we report the development of a semi-automated sample preparation protocol to produce adaptor-ligated fragment libraries. Using a liquid-handling robot in conjunction with Carboxy Terminated Magnetic Beads, we labeled each library sample using a unique 6 bp DNA barcode, which allowed multiplex sample processing and sequencing of 32 libraries in a single run using Applied Biosystems' SOLiD sequencer. We applied our semi-automated pipeline to targeted medical resequencing of nuclear candidate genes in individuals affected by mitochondrial disorders. This novel method is capable of preparing as much as 32 DNA libraries in 2.01 days (8-hour workday) for emulsion PCR/high throughput DNA sequencing, increasing sample preparation production by 8-fold.

Details

Title
Semi-Automated Library Preparation for High-Throughput DNA Sequencing Platforms
Author
Farias-Hesson, Eveline; Erikson, Jonathan; Atkins, Alexander; Shen, Peidong; Davis, Ronald W; Scharfe, Curt; Pourmand, Nader
Pages
617469
Publication year
2010
Publication date
2010
Publisher
John Wiley & Sons, Inc.
ISSN
11107243
e-ISSN
11107251
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
856170102
Copyright
Copyright © 2010 Eveline Farias-Hesson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.