Full text

Turn on search term navigation

Copyright © 2008 Yufeng Lu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper shows that if S is a bounded linear operator acting on the weighted Bergman spaces [superscript]Aα2[/superscript] on the unit ball in [superscript]...n[/superscript] such that S[subscript]T[subscript]zi[/subscript] [/subscript] =[subscript]T[subscript]z¯i[/subscript] [/subscript] S (i=1,...,n) , where [subscript]T[subscript]zi[/subscript] [/subscript] =[subscript]zi[/subscript] f and[subscript]T[subscript]z¯i[/subscript] [/subscript] =P([subscript]z¯i[/subscript] f) ; and where P is the weighted Bergman projection, then S must be a Hankel operator.

Details

Title
A Theorem of Nehari Type on Weighted Bergman Spaces of the Unit Ball
Author
Lu, Yufeng; Yang, Jun
Publication year
2008
Publication date
2008
Publisher
John Wiley & Sons, Inc.
ISSN
10853375
e-ISSN
16870409
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
856981264
Copyright
Copyright © 2008 Yufeng Lu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.