Abstract

Abstract

Background: Transcription Factors (TFs) and microRNAs (miRNAs) are key players for gene expression regulation in higher eukaryotes. In the last years, a large amount of bioinformatic studies were devoted to the elucidation of transcriptional and post-transcriptional (mostly miRNA-mediated) regulatory interactions, but little is known about the interplay between them.

Description: Here we describe a dynamic web-accessible database, CircuitsDB, supporting a genome-wide transcriptional and post-transcriptional regulatory network integration, for the human and mouse genomes, based on a bioinformatic sequence-analysis approach. In particular, CircuitsDB is currently focused on the study of mixed miRNA/TF Feed-Forward regulatory Loops (FFLs), i.e. elementary circuits in which a master TF regulates an miRNA and together with it a set of Joint Target protein-coding genes. The database was constructed using an ab-initio oligo analysis procedure for the identification of the transcriptional and post-transcriptional interactions. Several external sources of information were then pooled together to obtain the functional annotation of the proposed interactions. Results for human and mouse genomes are presented in an integrated web tool, that allows users to explore the circuits, investigate their sequence and functional properties and thus suggest possible biological experiments.

Conclusions: We present CircuitsDB, a web-server devoted to the study of human and mouse mixed miRNA/TF Feed-Forward regulatory circuits, freely available at: http://biocluster.di.unito.it/circuits/

Details

Title
CircuitsDB: a database of mixed microRNA/transcription factor feed-forward regulatory circuits in human and mouse
Author
Friard, Olivier; Re, Angela; Taverna, Daniela; De Bortoli, Michele; Corá, Davide
Pages
435
Publication year
2010
Publication date
2010
Publisher
BioMed Central
e-ISSN
14712105
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
901859433
Copyright
© 2010 Friard et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.