It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Abstract
Background: The presence of four mammalian cell entry (mce ) operons in Mycobacterium tuberculosis suggests the essentiality of the functions of the genes in these operons. The differential expression of the four mce operons in different phases of in vitro growth and in infected animals reported earlier from our laboratory further justifies the apparent redundancy for these genes in the genome.
Here we investigate the extent of polymorphism in eight genes in the mce1 and mce4 operons of M. tuberculosis from four standard reference strains (H37Rv, H37Ra, LVS (Low Virulent Strain) and BCG) and 112 clinical isolates varying in their drug susceptibility profile, analysed by direct sequencing and Sequenom MassARRAY platform.
Results: We discovered 20 single nucleotide polymorphisms (SNPs) in the two operons. The comparative analysis of the genes of mce1 and mce4 operons revealed that yrbE1A [Rv0167 ] was most polymorphic in mce1 operon while yrbE4A [Rv3501c ] and lprN [Rv3495c ] had the highest number of SNPs in the mce4 operon. Of 20 SNPs, 12 were found to be nonsynonymous and were further analysed for their pathological relevance to M. tuberculosis using web servers PolyPhen and PMut, which predicted five deleterious nonsynonymous SNPs. A mutation from proline to serine at position 359 of the native Mce1A protein was most deleterious as predicted by both PolyPhen and PMut servers. Energy minimization of the structure of native Mce1A protein and mutated protein was performed using InsightII. The mutated Mce1A protein showed structural changes that could account for the effects of this mutation.
Conclusions: Our results show that SNPs in the coding sequences of mce1 and mce4 operons in clinical isolates can be significantly high. Moreover, mce4 operon is significantly more polymorphic than mce1 operon (p < 0.001). However, the frequency of nonsynonymous substitutions is higher in mce1 operon and synonymous substitutions are more in mce4 operon. In silico modeling predict that nonsynonymous SNP at mce1A [Rv0169 ], a virulence gene could play a pivotal role in causing functional changes in M. tuberculosis that may reflect upon the biology of the bacteria.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer