It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Abstract
Background: Escherichia coli is frequently the first-choice host organism in expression of heterologous recombinant proteins in basic research as well as in production of commercial, therapeutic polypeptides. Especially the secretion of proteins into the culture medium of E. coli is advantageous compared to intracellular production due to the ease in recovery of the recombinant protein. Since E. coli naturally is a poor secretor of proteins, a few strategies for optimization of extracellular secretion have been described. We have previously reported efficient secretion of the diagnostically interesting model protein Peb1 of Campylobacter jejuni into the growth medium of Escherichia coli strain MKS12 (ΔfliCfliD ). To generate a more detailed understanding of the molecular mechanisms behind this interesting heterologous secretion system with biotechnological implications, we here analyzed further the transport of Peb1 in the E. coli host.
Results: When mature Peb1 was expressed without its SecA-YEG -dependent signal sequence and without the putative signal peptidase II recognition sequence in E. coli MKS111ΔHBB lacking the flagellar secretion complex, the protein was found in the periplasm and growth medium which indicated a flagellum-independent translocation. We assessed the Peb1 secretion proficiency by an exhaustive search for transport-affecting regions using a transposition-based scanning mutagenesis strategy. Strikingly, insertion mutagenesis of only two segments, called TAR1 (residues 42 and 43) and TAR2 (residues 173 to 180), prevented Peb1 secretion individually. We confirmed the importance of TAR regions by subsequent site-specific mutagenesis and verified that the secretion deficiency of Peb1 mutants was not due to insolubility or aggregation of the proteins in the cytoplasm. We found by cell fractionation that the mutant proteins were present in the periplasm as well as in the cytoplasm of MKS12. Hence, mutagenesis of TAR regions did not affect export of Peb1 across the cytoplasmic membrane, whereas its export over the outer membrane was markedly impaired.
Conclusions: We propose that the localization of the model protein Peb1 in the growth medium of E. coli is due to active secretion by a still unknown pathway of E. coli . The secretion apparently is a two-step process involving a periplasmic step and the TAR regions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer