It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Abstract
Background: The 1.8-kb mRNA was reported as one of the oncogenesis-related genes of Marek's disease virus (MDV). In this study, the bacterial artificial chromosome (BAC) clone of a MDV field strain GX0101 was used as the platform to generate mutant MDV to examine the functional roles of 1.8-kb mRNA.
Results: Based on the BAC clone of GX0101, the 1.8-kb mRNA deletion mutant GX0101Δ(A+C) was constructed. The present experiments indicated that GX0101Δ(A+C) retained a low level of oncogenicity, and it showed a decreased replication capacity in vitro and in vivo when compared with its parent virus, GX0101. Further studies in vitro demonstrated that deletion of 1.8-kb mRNA significantly decreased the transcriptional activity of the bi-directional promoter between 1.8-kb mRNA and pp38 genes of MDV.
Conclusion: These results suggested that the 1.8-kb mRNA did not directly influence the oncogenesis but related to the replication ability of MDV.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer