It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Abstract
Background: Microbial hosts offer a number of unique advantages when used as production systems for both native and heterologous small-molecules. These advantages include high selectivity and benign environmental impact; however, a principal drawback is low yield and/or productivity, which limits economic viability. Therefore a major challenge in developing a microbial production system is to maximize formation of a specific product while sustaining cell growth. Tools to rationally reconfigure microbial metabolism for these potentially conflicting objectives remain limited. Exhaustively exploring combinations of genetic modifications is both experimentally and computationally inefficient, and can become intractable when multiple gene deletions or insertions need to be considered. Alternatively, the search for desirable gene modifications may be solved heuristically as an evolutionary optimization problem. In this study, we combine a genetic algorithm and elementary mode analysis to develop an optimization framework for evolving metabolic networks with energetically favorable pathways for production of both biomass and a compound of interest.
Results: Utilization of thermodynamically-weighted elementary modes for flux reconstruction of E. coli central metabolism revealed two clusters of EMs with respect to their ΔGp °. For proof of principle testing, the algorithm was applied to ethanol and lycopene production in E. coli . The algorithm was used to optimize product formation, biomass formation, and product and biomass formation simultaneously. Predicted knockouts often matched those that have previously been implemented experimentally for improved product formation. The performance of a multi-objective genetic algorithm showed that it is better to couple the two objectives in a single objective genetic algorithm.
Conclusion: A computationally tractable framework is presented for the redesign of metabolic networks for maximal product formation combining elementary mode analysis (a form of convex analysis), pathway thermodynamics, and a genetic algorithm to optimize the production of two industrially-relevant products, ethanol and lycopene, from E. coli . The designed algorithm can be applied to any small-scale model of cellular metabolism theoretically utilizing any substrate and applied towards the production of any product.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer