[A & I plus PDF only]
COPYRIGHT: © Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Hydrology and Earth System Sciences 2009
Abstract
Ecohydrology and hydropedology are two emerging fields that are interconnected. In this study, we demonstrate stemflow hydrology and preferential water flow along roots in two desert shrubs (H. scoparium and S. psammophila) in the south fringe of Mu Us sandy land in North China. Stemflow generation and subsequent movement within soil-root system were investigated during the growing seasons from 2006 to 2008. The results indicated that the amount of stemflow in H. scoparium averaged 3.4% of incident gross rainfall with a range of 2.3-7.0%, while in S. psammophila stemflow averaged 6.3% with a range of 0.2-14.2%. Stemflow was produced from rainfall events with total amount more than 1 mm for both shrubs. The average funneling ratio (the ratio of rainfall amount delivered to the base of the tree to the rainfall that would have reached the ground should the tree were not present) was 77.8 and 48.7 for H. scoparium and S. psammophila, respectively, indicating that branches and stems were fully contributing to stemflow generation and thereby provided sources of water for possible preferential flow into deeper soil layer. Analysis of Rhodamine-B dye distribution under the shrubs showed that root channels were preferential pathways for the movement of most stemflow water into the soil. Distribution of soil water content under the shrubs with and without stemflow ascertained that stemflow was conducive to concentrate and store water in deeper layers in the soil profiles, which may create favorable soil water conditions for plant growth under arid conditions. Accordingly, a clear linkage between aboveground ecohydrology and belowground hydropedology in the desert shrubs is worth noticing, whereby an increase in stemflow would result in an increase in soil hydrologic heterogeneity.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer