[A & I plus PDF only]
COPYRIGHT: © Author(s) 2010. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Natural Hazards and Earth System Sciences 2010
Abstract
In flash flood prone areas, roads are often the first assets affected by inundations which make rescue operations difficult and represent a major threat to lives: almost half of the victims are car passengers trapped by floods. In the past years, the Gard region (France) road management services have realized an extensive inventory of the known road submersions that occurred during the last 40 years. This inventory provided an unique opportunity to analyse the causes of road flooding in an area frequently affected by severe flash floods. It will be used to develop a road submersion susceptibility rating method, representing the first element of a road warning system.
This paper presents the results of the analysis of this data set. A companion paper will show how the proposed road susceptibility rating method can be combined with distributed rainfall-runoff simulations to provide accurate road submersion risk maps.
The very low correlation between the various possible explanatory factors and the susceptibility to flooding measured by the number of past observed submersions implied the use of particular statistical analysis methods based on the general principals of the discriminant analysis.
The analysis led to the definition of four susceptibility classes for river crossing road sections. Validation tests confirmed that this classification is robust, at least in the considered area. One major outcome of the analysis is that the susceptibility to flooding is rather linked to the location of the road sections than to the size of the river crossing structure (bridge or culvert).
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer