Full text

Turn on search term navigation

Copyright Nature Publishing Group Jan 2012

Abstract

Chemically modified graphene platelets, produced via graphene oxide, show great promise in a variety of applications due to their electrical, thermal, barrier and mechanical properties. Understanding the chemical structures of chemically modified graphene platelets will aid in the understanding of their physical properties and facilitate development of chemically modified graphene platelet chemistry. Here we use (13)C and (15)N solid-state nuclear magnetic resonance spectroscopy and X-ray photoelectron spectroscopy to study the chemical structure of (15)N-labelled hydrazine-treated (13)C-labelled graphite oxide and unlabelled hydrazine-treated graphene oxide, respectively. These experiments suggest that hydrazine treatment of graphene oxide causes insertion of an aromatic N(2) moiety in a five-membered ring at the platelet edges and also restores graphitic networks on the basal planes. Furthermore, density-functional theory calculations support the formation of such N(2) structures at the edges and help to elucidate the influence of the aromatic N(2) moieties on the electronic structure of chemically modified graphene platelets.

Details

Title
Chemical structures of hydrazine-treated graphene oxide and generation of aromatic nitrogen doping
Author
Park, Sungjin; Hu, Yichen; Hwang, Jin Ok; Lee, Eui-sup; Casabianca, Leah B; Cai, Weiwei; Potts, Jeffrey R; Ha, Hyung-wook; Chen, Shanshan; Oh, Junghoon; Kim, Sang Ouk; Kim, Yong-hyun; Ishii, Yoshitaka; Ruoff, Rodney S
Pages
638
Publication year
2012
Publication date
Jan 2012
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
918993029
Copyright
Copyright Nature Publishing Group Jan 2012