[A & I plus PDF only]
COPYRIGHT: © Author(s) 2012. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2012
Abstract
Dust storms and associated mineral aerosol transport are driven primarily by meso- and synoptic-scale atmospheric processes. It is therefore essential that the dust aerosol process and background atmospheric conditions that drive dust emissions and atmospheric transport are represented with sufficiently well-resolved spatial and temporal features. The effects of airborne dust interactions with the environment determine the mineral composition of dust particles. The fractions of various minerals in aerosol are determined by the mineral composition of arid soils; therefore, a high-resolution specification of the mineral and physical properties of dust sources is needed.
Several current dust atmospheric models simulate and predict the evolution of dust concentrations; however, in most cases, these models do not consider the fractions of minerals in the dust. The accumulated knowledge about the impacts of the mineral composition in dust on weather and climate processes emphasizes the importance of including minerals in modeling systems. Accordingly, in this study, we developed a global dataset consisting of the mineral composition of the current potentially dust-producing soils. In our study, we (a) mapped mineral data to a high-resolution 30 s grid, (b) included several mineral-carrying soil types in dust-productive regions that were not considered in previous studies, and (c) included phosphorus.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer