[A & I plus PDF only]
COPYRIGHT: © Author(s) 2012. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2012
Abstract
The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 aircraft has acquired extensive datasets of aerosol extinction (532 nm), aerosol optical depth (AOD) (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 18 field missions that have been conducted over North America since 2006. The lidar measurements of aerosol intensive parameters (lidar ratio, depolarization, backscatter color ratio, and spectral depolarization ratio) are shown to vary with location and aerosol type. A methodology based on observations of known aerosol types is used to qualitatively classify the extensive set of HSRL aerosol measurements into eight separate types. Several examples are presented showing how the aerosol intensive parameters vary with aerosol type and how these aerosols are classified according to this new methodology. The HSRL-based classification reveals vertical variability of aerosol types during the NASA ARCTAS field experiment conducted over Alaska and northwest Canada during 2008. In two examples derived from flights conducted during ARCTAS, the HSRL classification of biomass burning smoke is shown to be consistent with aerosol types derived from coincident airborne in situ measurements of particle size and composition. The HSRL retrievals of AOD and inferences of aerosol types are used to apportion AOD to aerosol type; results of this analysis are shown for several experiments.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer