It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Abstract
Objectives: Health utility combines health related quality of life and mortality to produce a generic outcome measure reflecting both morbidity and mortality. It has not been widely used as an outcome measure in evaluations of emergency care and little is known about the feasibility of measurement, typical values obtained or baseline factors that predict health utility. We aimed to measure health utility after emergency medical admission, to compare health utility to age, gender and regional population norms, and identify independent predictors of health utility.
Methods: We selected 5760 patients across three hospitals who were admitted to hospital by ambulance as a medical emergency. The EQ-5D questionnaire was mailed to all who were still alive 30 days after admission. Health utility was estimated by applying tariff values to the EQ-5D responses or imputing a value of zero for those who had died. Multivariable analysis was used to identify independent predictors of health utility at 30 days.
Results: Responses were received from 2488 (47.7%) patients, while 541 (9.4%) had died. Most respondents reported some or severe problems with each aspect of health. Mean health utility was 0.49 (standard deviation 0.35) in survivors and 0.45 (0.36) including non-survivors. Some 75% had health utility below their expected value (mean loss 0.32, 95% confidence interval 0.31 to 0.33) and 11% had health utility below zero (worse than death). On multivariable modelling, reduced health utility was associated with increased age and lower GCS, varied according to ICD10 code and was lower among females, patients with recent hospital admission, steroid therapy, or history of chronic respiratory disease, malignancy, diabetes or epilepsy.
Conclusions: Health utility can be measured after emergency medical admission, although responder bias may be significant. Health utility after emergency medical admission is poor compared to population norms. We have identified independent predictors or health utility that need to be measured and taken into account in non-randomized evaluations of emergency care.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer