[A & I plus PDF only]
COPYRIGHT: © Author(s) 2012. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2012
Abstract
The mid-Pliocene Warm Period (3.29 to 2.97 Ma BP) has been identified as an analogue for the future, with the potential to help understand climate processes in a warmer than modern world. Sets of climate proxies, combined to provide boundary conditions for Global Climate Model (GCM) simulations of the mid-Pliocene, form the basis for the international, data-driven Pliocene Model Intercomparison Project (PlioMIP). Here, we outline the strategy for implementing pre-industrial (modern) and mid-Pliocene forcings and boundary conditions into the GENESIS version 3 GCM, as part of PlioMIP. We describe the prescription of greenhouse gas concentrations and orbital parameters and the implementation of geographic boundary conditions such as land-ice-sea distribution, topography, sea surface temperatures, sea ice extent, vegetation, soils, and ice sheets. We further describe model-specific details including spin-up and integration times. In addition, the global climatology of the mid-Pliocene as simulated by the GENESIS v3 GCM is analyzed and compared to the pre-industrial control simulation. The simulated climate of the mid-Pliocene warm interval is found to differ considerably from pre-industrial. We identify model sensitivity to imposed forcings, and internal feedbacks that collectively affect both local and far-field responses. Our analysis points out the need to assess both the direct impacts of external forcings and the combined effects of indirect, internal feedbacks. This paper provides the basis for assessing model biases within the PlioMIP framework, and will be useful for comparisons with other studies of mid-Pliocene climates.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer