It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Doc number: 150
Abstract
Background: The Th17 subset and IL-17 have been found in increased frequencies within certain tumors. However, their relevance in cancer biology remains controversial. This study aimed to clarify the biological action of IL-17 on hepatocellular carcinoma (HCC).
Methods: Effects and underlying molecular mechanisms of IL-17 on human HCC were explored in vitro using exogenous IL-17 stimulation and in nude mice by implanting IL-17 overexpressed HCC cells. The clinical significance of IL-17 was investigated in tissue microarrays containing HCC tissues from 323 patients following hepatectomy using immunohistochemistry.
Results: Although exogenous IL-17 showed no direct effect on the growth rate of HCC cells in vitro , PCR and ELISA showed that IL-17 selectively augmented the secretion of diverse proinvasive factors and transwell showed a direct promotion of invasion of HCC cells by IL-17. Furthermore, transfection of IL-17 into HCC cells significantly promoted neoangiogenesis, neutrophil recruitment and tumor growth in vivo . Using siRNA mediated knockdown of AKT and STAT3, we suggested that the effects of IL-17 were operated through activation of the AKT signaling in HCC, which resulted in IL-6 production. Then, IL-6 in turn activated JAK2/STAT3 signaling and subsequently up-regulated its downstream targets IL-8, MMP2, and VEGF. Supporting these findings, in human HCC tissues, immunostaining indicated that IL-17 expression was significantly and positively associated with STAT3 phosphorylation, neutrophil infiltration and increased tumor vascularity. The clinical significance of IL-17 was authenticated by revealing that the combination of intratumoral IL-17+ cells and phospho-STAT3 served as a better prognosticator for postoperative tumor recurrence than either marker alone.
Conclusions: IL-17 mediated tumor-promoting role involves a direct effect on HCC cells through IL-6/JAK2/STAT3 induction by activating the AKT pathway.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer