Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To fully exploit the potential of hydrogel micro-fibers in the design of regenerative medicinal materials, we designed a simple, easy to replicate system for cell embedding in degradable fibrous scaffolds, and validated its effectiveness using alginate-based materials. For scaffold fabrication, cells are suspended in a hydrogel-precursor and injected in a closed-loop circuit, where a pump circulates the ionic cross-linking solution. The flow of the cross-linking solution stretches and solidifies a continuous micro-scaled, cell-loaded hydrogel fiber that whips, bends, and spontaneously assembles in a self-standing, spaghetti-like patch. After investigation and tuning of process- and solution-related parameters, homogeneous microfibers with controlled diameters and consistent scaffolds were obtained from different alginate concentrations and blends with biologically favorable macromolecules (i.e., gelatin or hyaluronic acid). Despite its simplicity, this coaxial-flow encapsulation system allows for the rapid and effortless fabrication of thick, well-defined scaffolds, with viable cells being homogeneously distributed within the fibers. The reduced fiber diameter and the inherent macro-porous structure that is created from the random winding of fibers can sustain mass transport, and support encapsulated cell survival. As different materials and formulations can be processed to easily create homogeneously cell-populated structures, this system appears as a valuable platform, not only for regenerative medicine, but also, more in general, for 3D cell culturing in vitro.

Details

Title
3D Encapsulation Made Easy: A Coaxial-Flow Circuit for the Fabrication of Hydrogel Microfibers Patches
Author
Campiglio, Chiara Emma 1   VIAFID ORCID Logo  ; Ceriani, Francesca 2 ; Draghi, Lorenza 1   VIAFID ORCID Logo 

 Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Via Mancinelli 7, 20131 Milano, Italy; INSTM—National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti, 9-50121 Firenze, Italy 
 Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy 
First page
30
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
23065354
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2546958345
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.