Full Text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

6D pose estimation is a common and important task in industry. Obtaining the 6D pose of objects is the basis for many other functions such as bin picking, autopilot, etc. Therefore, many corresponding studies have been made in order to improve the accuracy and enlarge the range of application of various approaches. After several years of development, the methods of 6D pose estimation have been enriched and improved. Although some predecessors have analyzed the methods and summarized them in detailed, there have been many new breakthroughs in recent years. To understand 6D pose estimation better, this paper will make a new and more detailed review of 6D pose estimation. We divided these methods into two approaches: Learning-based approaches and non-learning-based approaches, including 2D-information-based approach and 3D-information-based approach. Additionally, we introduce the challenges that exist in 6D pose estimation. Finally, we compare the performance of different methods qualitatively and discuss the future development trends of the 6D pose estimation.

Details

Title
6D Pose Estimation of Objects: Recent Technologies and Challenges
Author
He, Zaixing 1   VIAFID ORCID Logo  ; Feng, Wuxi 1   VIAFID ORCID Logo  ; Zhao, Xinyue 1 ; Lv, Yongfeng 2 

 School of Mechanical Engineering, the State Key Lab of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; [email protected] (Z.H.); [email protected] (W.F.) 
 Zhejiang Institute of Mechanical and Electrical Engineering, Hangzhou 310053, China; [email protected] 
First page
228
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2559412851
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.