Full Text

Turn on search term navigation

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

More than 90 different modified nucleosides have been identified in tRNA. Among the tRNA modifications, the 7-methylguanosine (m7G) modification is found widely in eubacteria, eukaryotes, and a few archaea. In most cases, the m7G modification occurs at position 46 in the variable region and is a product of tRNA (m7G46) methyltransferase. The m7G46 modification forms a tertiary base pair with C13-G22, and stabilizes the tRNA structure. A reaction mechanism for eubacterial tRNA m7G methyltransferase has been proposed based on the results of biochemical, bioinformatic, and structural studies. However, an experimentally determined mechanism of methyl-transfer remains to be ascertained. The physiological functions of m7G46 in tRNA have started to be determined over the past decade. For example, tRNA m7G46 or tRNA (m7G46) methyltransferase controls the amount of other tRNA modifications in thermophilic bacteria, contributes to the pathogenic infectivity, and is also associated with several diseases. In this review, information of tRNA m7G modifications and tRNA m7G methyltransferases is summarized and the differences in reaction mechanism between tRNA m7G methyltransferase and rRNA or mRNA m7G methylation enzyme are discussed.

Details

Title
7-Methylguanosine Modifications in Transfer RNA (tRNA)
Author
Tomikawa, Chie  VIAFID ORCID Logo 
First page
4080
Publication year
2018
Publication date
2018
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2582843666
Copyright
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.